816 research outputs found

    Fractal-Based Oscillation of Macular Arteriogenesis and Dropout During Progressive Diabetic Retinopathy

    Get PDF
    By both fractal (D1) and branching (Lv) analysis, macular arterial density oscillated with progression from mild NPDR to PDR. Results are consistent with out study reported recently for the entire arterial and venous branching trees within 50 degree FAs by VESGEN generational branching analysis. Current and previous results are important for advances in early-stage regenerative DR therapies, for which reversal of DR progression to a normal vessel density may be possible. For example, potential use of regenerative angiogenesis stimulators to reverse vascular dropout during mild and severe NPDR is not indicated for treatment of moderate NPDR

    Strategic Operations Research and the Edelman Prize Finalist Applications 1989-1998

    Get PDF
    In an earlier study we examined the available evidence on the Edelman Prize finalist applications 1989-1998. This study concluded that 13 of the 42 private sector applications provide examples of strategic operations research (SOR) when SOR is defined as operations research that creates a sustainable competitive advantage. In a follow-up study we tested our classifications, gathering longitudinal information on the continued success of the Edelman applications. We contacted people who were familiar with all the private sector applications that were Edelman finalists 1989-1996 and had at least five years of history since the competition. We describe the post-Edelman history of these applications and use this data to reassess their strategic role. We found that the longitudinal data provides evidence to support our original classification, but also suggests that several additional applications were more strategic than was originally apparent. We conclude that almost 60% (20 of 34) of these applications created a sustainable competitive advantage for their firms and provide examples of SOR

    Xenopus Cdc14α/β are localized to the nucleolus and centrosome and are required for embryonic cell division

    Get PDF
    BACKGROUND: The dual specificity phosphatase Cdc14 has been shown to be a critical regulator of late mitotic events in several eukaryotes, including S. cerevisiae, S. pombe. C. elegans and H. sapiens. However, Cdc14 homologs have clearly evolved to regulate distinct cellular processes and to respond to regulatory signals important for these processes. The human paralogs hCdc14A and B are the only vertebrate Cdc14 homologues studied to date, but their functions are not well understood. Therefore, it is of great interest to examine the function Cdc14 homologs in other vertebrate species. RESULTS: We identified two open reading frames from Xenopus laevis closely related to human Cdc14A, called XCdc14α and XCdc14β, although no obvious paralog of the hCdc14B was found. To begin a functional characterization of Xcdc14α and XCdc14β, we raised polyclonal antibodies against a conserved region. These antibodies stained both the nucleolus and centrosome in interphase Xenopus tissue culture cells, and the mitotic centrosomes. GFP-tagged version of XCdc14α localized to the nucleulus and GFP-XCdc14β localized to the centrosome, although not exclusively. XCdc14α was also both meiotically and mitotically phosphorylated. Injection of antibodies raised against a conserved region of XCdc14/β into Xenopus embryos at the two-cell stage blocked division of the injected blastomeres, suggesting that activities of XCdc14α/β are required for normal cell division. CONCLUSION: These results provide evidence that XCdc14α/β are required for normal cellular division and are regulated by at least two mechanisms, subcellular localization and possibly phosphorylation. Due to the high sequence conservation between Xcdc14α and hCdc14A, it seems likely that both mechanisms will contribute to regulation of Cdc14 homologs in vertebrates

    Hydraulic Fracturing Mine Back Trials — Design Rationale and Project Status

    Get PDF
    Last year, a joint Mining and Oil & Gas industry consortium was established in Canada to conduct hydraulic fracturing (HF) tests accompanied by a mine-back of fractured regions to assess HF models and microseismic monitoring data during controlled experiments. Details about the displacement field, fracture aperture and extent, and micro-seismic parameters could then be verified and used as calibration data for modeling of HF processes in igneous and dense sedimentary rocks

    Efficacy and Safety of Biosimilar FYB201 Compared with Ranibizumab in Neovascular Age-Related Macular Degeneration.

    Get PDF
    Abstract Purpose This trial was conducted to investigate the clinical equivalence of the proposed biosimilar FYB201 and reference ranibizumab in patients with treatment-naive, subfoveal choroidal neovascularization caused by neovascular age-related macular degeneration (nAMD). Design This was a prospective, multicenter, evaluation-masked, parallel-group, 48-week, phase III randomized study. Participants A total of 477 patients were randomly assigned to receive FYB201 (n = 238) or reference ranibizumab (n = 239). Methods Patients received FYB201 or ranibizumab 0.5 mg by intravitreal injection in the study eye every four weeks. Main Outcome Measures The primary end point was change from baseline in best corrected visual acuity (BCVA) by Early Treatment Diabetic Retinopathy Study (ETDRS) letters at 8 weeks prior to the third monthly intravitreal injection. Biosimilarity of FYB201 to its originator was assessed via a two-sided equivalence test, with an equivalence margin in BCVA of 3 ETDRS letters. Results BCVA improved in both groups, with a mean improvement of +5.1 (FYB201) and +5.6 (reference ranibizumab) ETDRS letters at week 8. The analysis of covariance (ANCOVA) least squares mean difference for the change from baseline between FYB201 and reference ranibizumab was –0.4 ETDRS letters with a 90% confidence interval (CI) of –1.6 to 0.9. Primary end point was met as the 90% CI was within the predefined equivalence margin. Adverse events were comparable between treatment groups. Conclusions FYB201 is biosimilar to reference ranibizumab in terms of clinical efficacy and ocular and systemic safety in the treatment of patients with nAMD

    Observational Constraints on the Catastrophic Disruption Rate of Small Main Belt Asteroids

    Full text link
    We have calculated 90% confidence limits on the steady-state rate of catastrophic disruptions of main belt asteroids in terms of the absolute magnitude at which one catastrophic disruption occurs per year (HCL) as a function of the post-disruption increase in brightness (delta m) and subsequent brightness decay rate (tau). The confidence limits were calculated using the brightest unknown main belt asteroid (V = 18.5) detected with the Pan-STARRS1 (Pan-STARRS1) telescope. We measured the Pan-STARRS1's catastrophic disruption detection efficiency over a 453-day interval using the Pan-STARRS moving object processing system (MOPS) and a simple model for the catastrophic disruption event's photometric behavior in a small aperture centered on the catastrophic disruption event. Our simplistic catastrophic disruption model suggests that delta m = 20 mag and 0.01 mag d-1 < tau < 0.1 mag d-1 which would imply that H0 = 28 -- strongly inconsistent with H0,B2005 = 23.26 +/- 0.02 predicted by Bottke et al. (2005) using purely collisional models. We postulate that the solution to the discrepancy is that > 99% of main belt catastrophic disruptions in the size range to which this study was sensitive (100 m) are not impact-generated, but are instead due to fainter rotational breakups, of which the recent discoveries of disrupted asteroids P/2013 P5 and P/2013 R3 are probable examples. We estimate that current and upcoming asteroid surveys may discover up to 10 catastrophic disruptions/year brighter than V = 18.5.Comment: 61 Pages, 10 Figures, 3 Table

    The non-Gaussian tail of cosmic-shear statistics

    Get PDF
    Due to gravitational instability, an initially Gaussian density field develops non-Gaussian features as the Universe evolves. The most prominent non-Gaussian features are massive haloes, visible as clusters of galaxies. The distortion of high-redshift galaxy images due to the tidal gravitational field of the large-scale matter distribution, called cosmic shear, can be used to investigate the statistical properties of the LSS. In particular, non-Gaussian properties of the LSS will lead to a non-Gaussian distribution of cosmic-shear statistics. The aperture mass (MapM_{\rm ap}) statistics, recently introduced as a measure for cosmic shear, is particularly well suited for measuring these non-Gaussian properties. In this paper we calculate the highly non-Gaussian tail of the aperture mass probability distribution, assuming Press-Schechter theory for the halo abundance and the `universal' density profile of haloes as obtained from numerical simulations. We find that for values of MapM_{\rm ap} much larger than its dispersion, this probability distribution is closely approximated by an exponential, rather than a Gaussian. We determine the amplitude and shape of this exponential for various cosmological models and aperture sizes, and show that wide-field imaging surveys can be used to distinguish between some of the currently most popular cosmogonies. Our study here is complementary to earlier cosmic-shear investigations which focussed more on two-point statistical properties.Comment: 9 pages, 5 figures, submitted to MNRA
    • …
    corecore